Content Correlation Chart
Episode 3 – Ace The Lace

Major Concepts

<table>
<thead>
<tr>
<th>Grades</th>
<th>Geometry and Spatial Sense</th>
<th>Patterning and Algebra</th>
<th>Data Management and Probability</th>
<th>Process Skills and/or Problem Solving</th>
</tr>
</thead>
</table>
| 1 | Describe the relative locations of objects or people using positional language (e.g., over, under, above, below, in front of, behind, inside, outside, beside, between, along) | Identify, describe, and extend, through investigation, geometric repeating patterns involving one attribute (e.g., colour, size, shape, thickness, orientation) | Identify a rule for a repeating pattern (e.g., "We're lining up boy, girl, boy, girl, boy, girl.") | **Problem Solving:**
 - Is the primary focus and goal of mathematics in the real world;
 - Allows students to use the knowledge they bring to school and helps them connect mathematics with situations outside the classroom;
 - Allows students to reason, communicate ideas, make connections, and apply knowledge and skills;
 - Promotes the collaborative sharing of ideas and strategies, and promotes talking about mathematics;
 - Helps students find enjoyment in mathematics;
 - Increases opportunities for the use of critical-thinking skills (estimating, evaluating, classifying, assuming, recognizing relationships, hypothesizing, offering opinions with reasons, and making judgements);

| 1. | Identifying and creating simple repeating patterns | Sample problem: Use beads to make a string that shows a repeating pattern | **Process Skills:**
 - Use of planning skills: understanding the problem |
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | • Identify repeating patterns found in real-life contexts | • Describe probability as a measure of the likelihood that an event will occur, using mathematical language (i.e., impossible, unlikely, less likely, equally likely, more likely, certain) (e.g., "If I take a new shoe out of a box without looking, it's equally likely that I will pick the left shoe or the right shoe.") | • Making a plan for solving the problem
• Use of processing skills: carrying out the plan, looking back at the solution
• Use of critical/creative thinking processes
• Transfer of knowledge and skills to new contexts
• Making connections within and between various contexts (e.g., connections between concepts, representations within mathematics, prior knowledge, and the real world) |